291 research outputs found

    Exchange-Repairs: Managing Inconsistency in Data Exchange

    Full text link
    In a data exchange setting with target constraints, it is often the case that a given source instance has no solutions. In such cases, the semantics of target queries trivialize. The aim of this paper is to introduce and explore a new framework that gives meaningful semantics in such cases by using the notion of exchange-repairs. Informally, an exchange-repair of a source instance is another source instance that differs minimally from the first, but has a solution. Exchange-repairs give rise to a natural notion of exchange-repair certain answers (XR-certain answers) for target queries. We show that for schema mappings specified by source-to-target GAV dependencies and target equality-generating dependencies (egds), the XR-certain answers of a target conjunctive query can be rewritten as the consistent answers (in the sense of standard database repairs) of a union of conjunctive queries over the source schema with respect to a set of egds over the source schema, making it possible to use a consistent query-answering system to compute XR-certain answers in data exchange. We then examine the general case of schema mappings specified by source-to-target GLAV constraints, a weakly acyclic set of target tgds and a set of target egds. The main result asserts that, for such settings, the XR-certain answers of conjunctive queries can be rewritten as the certain answers of a union of conjunctive queries with respect to the stable models of a disjunctive logic program over a suitable expansion of the source schema.Comment: 29 pages, 13 figures, submitted to the Journal on Data Semantic

    Allen's Interval Algebra Makes the Difference

    Get PDF
    Allen's Interval Algebra constitutes a framework for reasoning about temporal information in a qualitative manner. In particular, it uses intervals, i.e., pairs of endpoints, on the timeline to represent entities corresponding to actions, events, or tasks, and binary relations such as precedes and overlaps to encode the possible configurations between those entities. Allen's calculus has found its way in many academic and industrial applications that involve, most commonly, planning and scheduling, temporal databases, and healthcare. In this paper, we present a novel encoding of Interval Algebra using answer-set programming (ASP) extended by difference constraints, i.e., the fragment abbreviated as ASP(DL), and demonstrate its performance via a preliminary experimental evaluation. Although our ASP encoding is presented in the case of Allen's calculus for the sake of clarity, we suggest that analogous encodings can be devised for other point-based calculi, too.Comment: Part of DECLARE 19 proceeding

    Mars riometer system

    Get PDF
    A riometer (relative ionospheric opacity meter) measures the intensity of cosmic radio noise at the surface of a planet. When an electromagnetic wave passes through the ionosphere collisions between charged particles (usually electrons) and neutral gases remove energy from the wave. By measuring the received signal intensity at the planet's surface and comparing it to the expected value (the quietday curve) a riometer can deduce the absorption (attenuation) of the trans-ionospheric signal. Thus the absorption measurements provide an indication of ionisation changes occurring in the ionosphere. To avoid the need for orbiting sounders riometers use the cosmic noise background as a signal source. Earth-based systems are not subject to the challenging power, volume and mass restriction that would apply to a riometer for Mars. Some Earth-based riometers utilise phased-array antennas in order to provide an imaging capability.UnpublishedVienna - Austria3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeope

    Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription

    Full text link
    Circumscription is a representative example of a nonmonotonic reasoning inference technique. Circumscription has often been studied for first order theories, but its propositional version has also been the subject of extensive research, having been shown equivalent to extended closed world assumption (ECWA). Moreover, entailment in propositional circumscription is a well-known example of a decision problem in the second level of the polynomial hierarchy. This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for entailment in propositional circumscription that explores the relationship of propositional circumscription to minimal models. The new algorithm is inspired by ideas commonly used in SAT-based model checking, namely counterexample guided abstraction refinement. In addition, the new algorithm is refined to compute the theory closure for generalized close world assumption (GCWA). Experimental results show that the new algorithm can solve problem instances that other solutions are unable to solve

    On the characterization of magnetic reconnection in global MHD simulations

    Get PDF
    The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency

    The magnetotail reconnection region in a global MHD simulation

    No full text
    International audienceThis work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs

    Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Get PDF
    We study the wave-related (AC) and static (DC) parallel Poynting vector (Poynting energy flux) as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector) is statistically not sufficient to power auroral electron precipitation, although it may, for <i>K<sub>p</sub></i>>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at <i>R</i>=4 <i>R<sub>E</sub></i>, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS). The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT) we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 <i>R<sub>E</sub></i> radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at <i>R</i>=3–4 <i>R<sub>E</sub></i>. <p><b>Keywords.</b> Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions) – Space plasma physics (Wave-particle interactions

    Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis

    Get PDF
    We investigate the Northern Hemisphere Joule heating from several observational and computational sources with the purpose of calibrating a previously identified functional dependence between solar wind parameters and ionospheric total energy consumption computed from a global magnetohydrodynamic (MHD) simulation (Grand Unified Magnetosphere Ionosphere Coupling Simulation, GUMICS-4). In this paper, the calibration focuses on determining the amount and temporal characteristics of Northern Hemisphere Joule heating. Joule heating during a substorm is estimated from global observations, including electric fields provided by Super Dual Auroral Network (SuperDARN) and Pedersen conductances given by the ultraviolet (UV) and X-ray imagers on board the Polar satellite. Furthermore, Joule heating is assessed from several activity index proxies, large statistical surveys, assimilative data methods (AMIE), and the global MHD simulation GUMICS-4. We show that the temporal and spatial variation of the Joule heating computed from the GUMICS-4 simulation is consistent with observational and statistical methods. However, the different observational methods do not give a consistent estimate for the magnitude of the global Joule heating. We suggest that multiplying the GUMICS-4 total Joule heating by a factor of 10 approximates the observed Joule heating reasonably well. The lesser amount of Joule heating in GUMICS-4 is essentially caused by weaker Region 2 currents and polar cap potentials. We also show by theoretical arguments that multiplying independent measurements of averaged electric fields and Pedersen conductances yields an overestimation of Joule heating.<br><br> <b>Keywords.</b> Ionosphere (Auroral ionosphere; Modeling and forecasting; Electric fields and currents
    • …
    corecore